首页

位置导航: 首页 > 学术前沿 > 正文

多组学融合技术前沿(上)——多层次生命图谱的构建与临床转化

来源:DAMO开发者矩阵

访问:

2025-11-03 15:43

多组学融合技术前沿(上)——多层次生命图谱的构建与临床转化


多组学时代的范式跃迁


生物信息学正从单一基因组分析迈向多维度、系统性的组学融合。中心法则(DNA→RNA→蛋白质→功能)为多组学提供了天然的层级框架,而疾病机制的复杂性则驱动研究者超越单一数据维度,整合基因组、表观组、转录组、蛋白组与代谢组,实现对病理过程的全景式解析。这一范式跃迁不仅是技术进步的必然,更是精准医学落地的核心支撑。



分辨率革命:从群体平均到单细胞时空图谱


传统bulk组学虽实现高通量检测,但其“群体平均”信号掩盖了细胞异质性,难以揭示关键亚群与微环境动态。近年来,研究范式经历双重跃迁:


跨组学整合:通过融合多层级数据(如GWAS+eQTL、转录组+蛋白组),构建“遗传变异→分子调控→功能表型”的因果链条,提升生物标志物的稳健性与机制解释力。


空间与单细胞解析:单细胞RNA测序(scRNA-seq)揭示细胞状态多样性与谱系轨迹;空间转录组则保留组织架构,绘制基因表达的“地理图谱”。二者共同推动研究从“模糊群体”迈向“精准细胞”,为肿瘤、神经退行性疾病等复杂病提供新视角。



生命的五维拼图:从遗传蓝图到代谢终局


  1. 基因组学:解码生命的原始代码


    作为多组学的起点,基因组学通过NGS与长读长测序,全面解析SNP、CNV、SV等变异。GWAS揭示疾病易感位点,PRS实现个体风险预测,MR推断因果关联。基因组不仅是“蓝图”,更成为多组学整合的坐标基准。


  2. 表观基因组学:调控网络的动态开关


    DNA甲基化、组蛋白修饰与染色质开放性共同构成基因表达的“调控层”。技术如ATAC-seq、ChIP-seq与ENCODE等资源,使我们得以解析组织特异性调控程序,揭示环境与遗传交互作用下的疾病机制。


  3. 转录组学:细胞状态的实时快照


    mRNA到非编码RNA(lncRNA、miRNA),转录组捕捉细胞对环境的即时响应。RNA-seq与scRNA-seq实现从群体到单细胞的跨越,空间转录组进一步叠加“位置信息”。AI模型加速数据挖掘,推动转录组学向动态建模与功能预测演进。


  4. 蛋白质组学:功能执行的直接证据


    蛋白质是生命活动的最终执行者。质谱与靶向平台(SomaScan、Olink)实现高通量蛋白定量,IP-MS解析互作网络,PTM分析揭示功能调控。AlphaFold等AI工具突破结构预测瓶颈,推动蛋白质组向功能解析与药物发现纵深发展。


  5. 代谢组学与脂质组学:疾病的化学终局


    代谢物是生化反应的终端产物,构成疾病的“化学指纹”。LC-MS、NMR等技术捕捉代谢网络动态,揭示能量代谢、信号通路紊乱。脂质组学聚焦脂质多样性,在心血管、代谢病中展现独特价值。尽管标准化挑战仍存,其作为表型终点的整合潜力日益凸显。



迈向系统医学的整合之路


多组学正从“单点突破”走向“系统集成”:基因组定调,表观组调控,转录组响应,蛋白组执行,代谢组终现。单细胞与空间技术赋予研究前所未有的分辨率,而AI则加速数据融合与知识发现。


然而,真正的挑战在于:如何跨越数据孤岛,实现跨模态、跨尺度的功能关联?如何将复杂分子图谱转化为可操作的临床决策?




参考文献:


  1. Harris L, McDonagh EM, Zhang X, Fawcett K, Foreman A, Daneck P et al. Genome-wide association testing beyond SNPs. Nat Rev Genet 2025; 26: 156–170;

  2. Kojima S, Koyama S, Ka M, Saito Y, Parrish EH, Endo Met al. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nat Genet 2023; 55: 939–951;

  3. Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics. Nat Rev Genet 2017; 18: 51–66;

  4. Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W et al. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discov 2024; 10: 28;

  5. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74;

  6. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci CMLS 2016; 73: 2491–2509;

  7. Rai AK, Lee B, Hebbard C, Uchida S, Garikipati VNS. Decoding the complexity of circular RNAs in cardiovascular disease. Pharmacol Res2021; 171: 105766;

  8. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63;

  9. Monzó C, Liu T, Conesa A. Transcriptomics in the era of long-read sequencing. Nat Rev Genet 2025; 1–21;

  10. Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B et al. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinforma Oxf Engl 2008; 24: 2894–2900;

  11. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012; 13: 227–232;

  12. Q Z, X X, Y Q, Z X, C C, B C et al.Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023; 4. doi:10.1002/mco2.261;

  13. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al.Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596: 583–589;

  14. Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M et al.AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res 2024; 52: D368–D375;

  15. Orchard S, Hermjakob H, Apweiler R. The proteomics standards initiative. Proteomics 2003; 3: 1374–1376;

  16. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al.Proteomics. Tissue-based map of the human proteome. Science 2015; 347: 1260419;

  17. Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics Yi Chuan Xue Bao 2020; 47: 69–83;

  18. Newgard CB. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab 2017; 25: 43–56;

  19. Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev2018; 37: 772–792;

  20. Spicer RA, Salek R, Steinbeck C. A decade after the metabolomics standards initiative it’s time for a revision. Sci Data 2017; 4: 170138;

  21. Lipidomics Standards Initiative Consortium. Lipidomics needs more standardization. Nat Metab 2019; 1: 745–747;

  22. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med 2020; 52: 1419–1427;

  23. Kaufmann M, Schaupp A-L, Sun R, Coscia F, Dendrou CA, Cortes A et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat Neurosci 2022; 25: 944–955;

  24. Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F et al.Machine Learning in Nuclear Medicine: Part 1-Introduction. J Nucl Med Off Publ Soc Nucl Med 2019; 60: 451–458;

  25. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al.Radiomics: extracting more information from medical images using advanced feature analysis.Eur J Cancer Oxf Engl 1990 2012; 48: 441–446;

  26. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al.Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30: 1234–1248;

  27. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A et al.The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology2020; 295: 328–338;

  28. Fernández-Tejada A, Brailsford J, Zhang Q, Shieh J-H, Moore MAS, Danishefsky SJ. Total synthesis of glycosylated proteins. Top Curr Chem 2015; 362: 1–26。